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ABSTRACT

The primary goal of this thesis research is to test the

effectiveness of various image processing techniques applied

to acoustic images generated in MATLAB. The simulated

acoustic images have the same characteristics as those

generated by a computer model of a high resolution imaging

sonar. Edge Detection and Segmentation are the two image

processing techniques discussed in this study. The two

methods tested are a modified version of Kalman filtering and

median filtering.
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I. INTRODUCTION

A. MOTIVATION FOR STUDY

In the study of acoustic imaging, the need arises to

classify objects located on or near the sea bottom. The

classification process can be related to various areas of

interest, such as sea-bottom profiling, mine hunting, undersea

navigation and target tracking. This process can become

difficult due to the presence of bottom backscatter noise that

is generated in the ocean environment. Through implementation

of well-known image processing techniques, the image

classification process can be made more efficient.

The first step in the classification process requires that

the object be separated from the noisy background. This

process is called segmentation and it is the first step for

image recognition and understanding. Several techniques can

be used for image segmentation. They range from ad hoc

techniques based on simple thresholding to more sophisticated

ones which use statistical models of images. In this thesis,

we developed several techniques based on Kalman Filtering and

Median Filtering to achieve the desired segmentation of the

object. These techniques were used on simulated acoustic

images with Gaussian and Rayleigh background noise developed

in MATLAB. In addition to segmentation, an algorithm was

developed to detect the edges of the simulated acoustic
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images. The image processing algorithms were written in

MATLAB and processed on the Sun SPARC 1 workstation.

This thesis is organized as follows: the imaging scenario

is discussed in Chapter II, a discussion of imaging processing

techniques for segmentation and edge detection is presented in

Chapter III, and the results of applying these techniques to

the simulated acoustic images are described in Chapter IV.

Chapter V relates conclusions and recommendations derived from

the study.
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II. IMAGING BACKGROUND

A. BACKGROUND

In this thesis we consider sonar images generated by a

computer simulator. The computer model generates images of a

class of targets, either a sphere, a cylinder, or a

rectangular bar simulated in the ocean environment. The

disturbance primarily affecting the acoustic images in this

model are due to bottom backscatter noise.

A high resolution imaging sonar can be modeled as a point

source emanating an acoustic plane wave of some frequency

typically in the 100 KHz to 2 MHz range. As the plane wave

travels through a medium such as the ocean, many factors

influence it. These factors include temperature, depth,

pressure, salinity, and surface weather conditions.

Additionally, as the plane wave approaches the boundaries of

the medium other losses occur. These boundaries are created

by the different layers of water and sediment that comprise

the ocean environment. Each layer has an associated

characteristic impedance which affects the transmission of an

acoustic plane wave traveling through it. This difference in

impedance generally tends to alter the direction of wave

propagation. [Ref. 2)

As the acoustic plane wave strikes the target, part of the

energy is reflected back toward the sonar, while the remaining
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energy passes the target and strikes the ocean bottom.

Depending on the type of bottom, some of the incident energy

will be reflected, while the remaining energy is transmitted

into the bottom sediment layer. The energy transmitted within

the bottom sediment layer is further transmitted and reflected

depending on the characteristic impedance of the local

material present. The local characteristic impedance can vary

depending on whether the bottom is composed of mud, mud and

sand, or sand and rock. Eventually, the energy reflected

within the bottom layer returns to the ocean layer to combine

with the energy reflected directly at the ocean bottom

interface. This results in bottom backscatter noise.

B. ACOUSTIC IMAGES

The acoustic images generated from the computer model used

in this thesis can be a sphere, a cylinder or a rectangular

bar. The model first creates a two-dimensional perspective

view of the target based upon programmable parameters defined

by the user. For example, the parameters include target type,

target size, target range, target height, sonar height, and

viewing angle. The perspective images do not contain the

presence of bottom backscatter noise.

After generating the perspective view of the image, the

next step in the imaging process involves combining the

visible target voxels from the perspective view of the image

with programmable sonar system parameters and sea-bottom

backscatter characteristics. Figure 1 presents a diagram of
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Figure 1. Diagram representing bottom backscatter model
(from Ref. 1]
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the bottom backsiatter model [Ref. 1]. The bottom backscatter

characteristics can be random uniform noise or random Rayleigh

noise. Figure 2 illustrates an example of an acoustic image

surrounded by random Rayleigh bottom backscatter noise.

C. SIMULATED ACOUSTIC IMAGES

Due to difficulties with processing and displaying the

data generated from the high resolution imaging sonar model,

simulated acoustic images with random Gaussian and Rayleigh

background noise were developed using MATLAB. These programs

generated a target (i.e., a circle), surrounded by either a

Gaussian or Rayleigh noise background. The simulated a, ustic

image subroutines had several programmable parameters such as

radius of circle, size of matrix, and value of the variance of

the background noise. The subroutines are listed in the

appendix. Examples of the simulated acoustic images with

variable values of the noise variance are shown in Figures 3 -

8.
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Figure 2. Rectangular bar in random Rayleigh

backscatter noise
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Figure 3. Simulated acoustic image with Gaussian background

noise (Radius = 40, sigma = 0.7)
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Figure 4. Simulated acoustic image with Gaussian background

noise (Radius = 40, sigma = 1.0)
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Figure 5. Simulated acoustic -image with Gaussian background

noise (Radius = 40, sigma = 1.5)
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Figure 6. Simulated acoustic image with Rayleigh background
noise (Radius = 4, sigma = 0.7)
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Figure 7. Simulated acoustic image with Rayleigh background

noise (Radius = 4, sigma = 1.0)
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Figure 8. Simulated acoustic image with Rayleigh background

noise (Radius = 40, sigma = 1.5)
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III. IMAGE PROCESSING TECHNIQUES

A. GENERAL

This chapter will discuss some of the spatial image

processing techniques that were developed for processing the

simulated acoustic images in MATLAB. These methods focus

primarily on edge detection and segmentation.

An image can be considered as a matrix of light intensity

levels that can be manipulated using computer algorithms in

MATLAB. Although none of the algorithms developed can be

used, as of now, in a real time sense, they provide some

insight into the feasibility of imaging processing techniques.

In the next section we present an algorithm for edge detection

to be applied to images corrupted by external disturbances.

B. EDGE DETECTION

Segmentation is a process that divides an image into

separate distinct parts or objects. This is generally the

first step in any image processing application because it is

at this step that the object of interest is detected from the

image for further processing. The process of segmentation is

based not only on discontinuities between grey level values

within an image matrix, but also on clustering of pixels with

similar intensity levels.

An edge can be considered as a boundary between two

distinct regions characterized by different levels of
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intensity. The idea of edge detection is based on recognizing

a distinct change in adjacent pixel values. The edge detector

for this study will display edges as light pixels and the

background as dark pixels.

C. EDGE DETECTION BY DIFFERENTIATION

Standard techniques of edge detection require the

computation of a local derivative operator. Although several

choices are available, the most widely used is based on a

gradient operator, which can be represented as a two

dimensional vector:

FGx1

G[f(x, y)] = aGj= 1

associated with each pixel (x,y) of the image, where f(x,y)

represents the pixel intensity level within the image matrix.

To determine the location of edges within an image matrix, the

magnitude of the vector G[(x,y)] defined by IG[f(x,y)]=[Gx +Gyj2

must be computed. [Ref. 3)

Since an image is a matrix defined in a discrete domain,

the derivative must be approximated by finite differences.

This can be obtained by convolving the intensity pixel data

f(x,y) with a mask representing the local operator. In this

way, we can compute the two components of the gradient as:
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Gx(xy) " -hx(m,n)f(x-m,y-n) (2)
m'n

GY(Xy) Yhy(m,n)f(x-m,y-n) (3)
m,n

where hx and hy represent the impulse responses of the

horizontal and vertical filters. In these convolutions, the

sums range over the whole field of definition of the image

with particular care taken at the boundaries. The operator

kernels hx and hy in general have a finite region of support

as shown in Figure 9.

(-1,1) (0,1) (i,1)

(-1,10) (0,1) (1,10)

Figure 9. Region of support for the gradient operator

The particular values assumed by hx and hy are shown

respectively in Figures 10 and 11.
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Figure 10. Operator kernel for hx

-1 0 1

-2 0 2

-i 0 1

Figure 11. Operator kernel for hy

The gradient vector, Gx, is maximum in correspondence of

the horizontal edges within the image while the gradient

vector. Gy, is maximum at the vertical edges. The magnitude

of the vector is proportional to the edges of the image.

Although it is very simple to implement, the gradient

method does not provide any filtering to remove noise and, in

general, is not used on noisy images. This is due to the same

reason we do not perform differentiation on a noisy signal.

Also, since the gradient method does not provide any estimate

17



of the intensity levels of the original image, it cannot be

used in segmenting noisy images.

Different alternatives which proved to be effective in the

presence of noise and external disturbances have been

investigated. The whole idea is to try to detect the regions

of the image of sufficiently large size to be classified as

object or background. Two techniques have been investigated,

the median filter and a modified version of the Kalman filter.

The combination of these two techniques seem not only to yield

satisfactory performance, but they are also feasible for use

on a standard microcomputer.

D. A KALMAN FILTER BASED EDGE DETECTION

The particular class of signals we address are represented

by piecewise constant data or data slowly changing within

compact regions. In this case, we can model each row of data

by a state space equation as follows:

x(k + 1)= (Px(k)+ v(k) (4)

y(k) = Cx(k) + w(k) (5)

where

x(k) is the true pixel intensity
y(k) is the measured pixel intensity
v(k) is a random forcing function
w(k) is random measurement noise

with initial conditions at the boundary of each region.

[Ref. 4]

The matrices 45 and C are determined from the piecewise

constant assumption of the data and several models will be
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used. In this research we will use one of two models, first

order or second order. Higher order models would considerably

complicate the algorithm without any significant improvement.

1. First Order Case

In this case, we consider the true intensity as a

random walk defined by:

x(k + 1)= x(k)+ v(k) (6)

where the true pixel intensity level x(k) is modeled as the

output of a first order linear system. In this case, x(k) is

a scalar with 0 =1 and C = 1. The model (Equation 5) is

valid within regions and it changes initial conditions at the

boundaries of each region.

2. Second Order Case

With this model, we consider the object as having

piecewise constant intensity levels similar to a ramp in order

to take into account drifts. The model equation is given by:

x(k + 1)= 2x(k)- x(k- 1)+ v(k) (7)

where the true intensity level is modeled as the output of a

double integrator. In this case, the state x(k) is a two-

dimensional vector and the model matrices are given by:

As in the previous case, the model is valid within the

regions and is re-initialized at each edge. In both cases,

the noise term v(k) defined by its covariance matrix Q, models

differences in data within the regions. Also, it will be seen
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that this matrix can be used in order to prevent the

estimation algorithm from losing sensitivity as k increases.

The Kalman Filter can then be used to estimate the

true pixel intensity. The Kalman Filter equations for pixel

intensity estimation are defined as:
i£( k + 1 / k ) = Oi, cCk / k) (8)

P(k + 1/k)= Oiu(k + 1/k) (9)

i(k+1/k+1)= i(k+l/k)+G(k+lXy(k+1)- 9(k+1/k)]2  (10)

where

i(k+1/k) is the prediction of the true pixel

intensity at x(k + 1) given the data through point k.

9(k+1/k) is the predicted measured pixel intensity

at k + 1 given the data up to point time k.

i(k+l/k+l) is the prediction of the true pixel

intensity at k + 1 given the data through point k + 1.

The Kalman Filter gain equations are defined as:

P(k + 1 / k)= ,P(k / k)," (11)

G(k+ 1)=P(k+1/k)C'[CP(k+1/k)C'+c] (12)

P(k + 1 / k + 1) = [l-G(k + 1)C]P(k + 1 / k) (13)

From the state space model, the random forcing

function v(k) and the random measurerent noi se w(k) are

assumed to be Gaussian random variables. It is a well-known

property of Kalman Filters that given a set of observations

y(0),...,y(k - 1) of pixel intensity values, we can compute

20



the probability that the next observation belongs to the same

model by using the following relation:

P(y(k) / y(k - 1),.. , y(O)) exp i(y(k)-Ci(k))' (14)

where the dependency on y(k - l),...,y(o) is contained in i(k)

[Ref. 5]. This assumption will hold as long as the data y(k),

belongs to the same model as y(k - 1), y(k - 2), etc. This

will result in the data also having a Gaussian distribution

with average Ci(k) and covariance CP(k)C'+R. Therefore, if we

normalize the error to obtain

E(k)- y(k)-Ci(k)

4CP(k)C'+R (5

in the ideal case, within a region, the variable E(k) is a

Gaussian random variable with zero mean and covariance equal

to one.

a. Edge Detection

The considerations of the Kalman Filter can be

used to construct an edge detector which is robust in the

presence of noise. From the above considerations, we can

detect the edges of an object within an image matrix by

checking IE(k)l > Threshold Hi

IE(k) < Threshold H0

where H1 represents detection of an edge and H. represents

detection of no edge. The threshold is determined from the

statistical properties of E(k) and fine tuned by trial and

error.
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Since E(k) is distributed as a Gaussian random

variable with zero mean and covariance equal to one, most of

its values are within the interval (3,-3). A reasonable

choice of a threshold would be between two and three. Any

value of I E(k) above the threshold means that the

measurement of y(k) does not belong to the same model as y(k -

1), y(k - 2), etc., and therefore, results in an edge at time

k. Clearly, the higher the threshold, the more likely the

possibility of missing an edge; similarly the lower the

threshold, the higher the possibility of detecting a false

edge. The best choice is a compromise which is a function of

the signal-to-noise ratio of the data. When the edge is

detected, the algorithm reinitializes the covariance matrix

P(k) of the Kalman Filter. Therefore, the general algorithm

for edge detection is defined as follows [Ref. 6):

- loop

- compute E(k) from Equation (15)

- if I E(k)l > T then an edge is detected

o re-initializes Kalman Filter

- Else

o no edge detected

o update Kalman Filter

- go to loop

It can be seen that the algorithm also provides

for an estimate of the intensity level CU(k) within each of
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the regions. Due to the filtering properties of the Kalman

Filter, we expect CU(k) to be smooth within the region and

the reinitialization process at each edge detected prevents

the algorithm from smoothing across the edges.

b. Segmentation

We can segment a noisy image through

implementation of a Kalman Filter that estimates the true

pixel intensity row by row and column by column. The true

pixel intensity can be estimated by testing the likelihood of

each one of the two hypotheses with respective probabilities:

Ho:P(y(k)/y(k- 1),...,y(o), no edge atk)

H:P(y(k) / y(k-1),...,y(O), edge at k)

Each one of the two probabilities can be computed by running

two Kalman Filter estimates at each point k as

io(k) = i(k-1)+ KO(k-1)(y(k-1)-C(k- 1)) (16)

il(k)=i(k-l)+Kl(k-lXy(k-1)-C(k-1)) (17)

with K1(k - 1) being determined from the standard Kalman Gain

equations:

P(k-1/k-2)= OP(k-2/k-2)" (18)
Ki(k - 1) = Pi(k - I / k - 2)C'[CPi(k - I / k - 2)C' + R]- 1 ( 19 )

Pi(k - 1/ k -1) = [I - K# -_ l)C]P.(k_ - / k_- 2) (20)

As a consequence, we update x(k) and P(k) with either io(k)

and P0 (k) or 11(k) and P, (k) according to which one of the two

probabilities for H0 or H, is larger. Using this comparison

will yield an image with noise removed.
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E. MEDIAN FILTERING

This is a non-linear technique that not only filters out

spurious noise from the edges of the image, but also preserves

the edges of the image. Median Filtering operates on the

principle of replacing the grey level value of each pixel with

median grey level value of its neighbors. Recall that the

median m of a set of values is such that half the values in

the set are smaller than m and half are greater than m.

In general, the median filter can be defined as

x(ij) = median y(mn) (mn) E ilq (21)

where Thj is a neighborhood of pixel (i,j). We use the

nearest neighbors shown in Figure 12, with the center pixel

(x,) being pixel (i,j).

x, x2  x3

x 4  x 5  x6

x7 x8 X9

Figure 12. Median filter 3 x 3 mask

In the next section, we see the results of applying the

techniques described above.
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IV. APPLICATION OF IMAGE PROCESSING TECHNIQUES

A. GENERAL

The techniques discussed in Chapter III were applied to

the simulated acoustic images. The algorithms developed were

first used to process the simulated acoustic image with random

Gaussian background noise. The results obtained from these

simulations were analyzed for effectiveness and improvements

were made for further application to the simulated acoustic

image with Rayleigh background noise. The Sun SPARC 1

workstation and MATLAB software were used to process the image

data.

B. SIMULATED ACOUSTIC IMAGE WITH GAUSSIAN BACKGROUND NOISE

The simulated acoustic image used in the study were

circles of arbitrary radius with random Gaussian background

noise of three different levels. The different background

noise levels simulated the various types of bottom backscatter

that are present in sonar imaging applications. The simulated

acoustic images were previously shown in Figures 3 - 5,

respectively.

1. Edge Detection

The modified Kalman Filter algorithm with a first

order model performed well in cases where the noise standard

deviation is less than one, compared with a difference of

three units between object and background. When the noise

25



increased, the edge detection algorithm had difficulty

distinguishing between random background noise and the actual

edge of the image. The threshold value, E(k), was adjusted to

various levels. If we recall from Chapter II, section D, the

error e was compared with a threshold which, in general,

ranged from one to three. The reason for these values is the

fact that the error signal we use to check for the edge is

normalized by its own expected standard deviation. This leads

to a random variable which has zero mean, and standard

deviation of one, and we know that most of the values are

within -3 and 3. In our experiments, the best results

obtained occurred with E(k) equal to 2.0. For values of E(k)

larger than two, the increased threshold did reduce the noise

spikes but the resulting image edges were distorted. The

detected edges of the test image for various noise levels are

shown in Figures 13 - 15.

The edge detection algorithm based on the second order

model, performed far better than that of the first order

model. Through trial and error, the threshold value, E(k),

equal to 2.0 was found to provide the best results. For sigma

equal to 0.7, the algorithm identified the edges of the image

perfectly as shown in Figure 16. As the magnitude of sigma

was increased to 1.0, the algorithm identified the edges of

the image, but had minor problems with some noise spikes

(Figure 17). This was still an improvement over the first

order model. A post filter, such as the median filtering

26



Figure 13. First order model edge detection with Gaussian

background noise (E(k) = 2.0, sigma = 0.7)
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Figure 14. First order model edge detection with Gaussian

background noise (E(k) = 2.0, sigma = 1.0)

28



Figure 15. First order model edge detection with Gaussian

background noise (E(k) = 2.0, sigma = 1.5)
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Figure 16. Second order model detection with Gaussian

background noise (E(k) = 2.0, sigma = 0.7)
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Figure 17. Second order model edge detection with Gaussian

background noise (E(k) = 2.0, sigma = 1.0)
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algorithm, can be used to remove the noise spikes. For sigma

with magnitude equal to 1.5, the second order model failed to

identify the true edges of the image (Figure 18). The

variation of the threshold value, E(k), did not provide any

better results.

2. Segmentation

Using the modified Kalman Filter to estimate the true

pixel intensity, provided a very efficient means to segment

the object out of the noisy background. For the algorithm

based on the first order model, the likelihood of

[P(y(k)/y(k-l)...y(O))] has been modified by the addition of

an extra term Beta which represents the priori on the edge.

This parameter is related to the likelihood of having an edge

at any given location, and it can be used to favor estimates

with a multitude of edges (i.e., Beta z 0) or smooth images

with only a few edges (i.e., Beta >> 0).

For the noise with sigma equal to 0.7, the algorithm

produced favorable results with beta equal to one (Figure 19).

The image was removed from the noisy background with the

presence of a small number of noise spikes. These noise

spikes were removed by using the median filtering algorithm as

a post filter. As the magnitude of sigma was increased to

1.0, the algorithm produced similar results with the addition

of more noise spikes (Figure 20). As mentioned above, the use

of the median filtering algorithm removed the noise spikes.

The algorithm could not function satisfactorily when the
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Figure 18. Second order model edge detection with Gaussian

background noise (E(k) - 2.0, sigma = 1.5)
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Figure 19. First order model segmentation with Gaussian

background noise (Beta = 1.0, sigma = 0.7)
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magnitude of sigma was increased to 1.5. The value of beta

was varied with no appreciable improvement to the algorithm.

The modified Kalman Filter algorithm based on the

second order model provided excellent results for the test

image with sigma values of 0.7 and 1.0. Figure 21 illustrates

the results with sigma equal to one. Using the second order

model provided the Kalman Filter an increased sensitivity to

differentiate between true pixel intensities and random

background noise. It turned out that satisfactory results

were obtained with Beta - 0. The algorithm produced

acceptable results even with a sigma value of 1.5 (Figure 22),

although the edges of the image were somewhat distorted.

These problems could be resolved through use of a median

filter as described in the first order model analysis.

3. Median Filtering

The median filtering algorithm was applied to the

simulated acoustic images as previously shown in Figures 3 -

5. The results of this application were as expected (Figures

23 - 25). The algorithm removed single noise spikes and

preserved the edges of the images. Median filtering used

independently will not produce the desired segmentation of the

object from the noisy background. The application of median

filtering in combination with the first order model modified

Kalman Filter as a post filter, produced acceptable results.
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Figure 21. Second order model segmentation

(Beta = 0, sigma = 1.0)-
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Figure 22. Second order model segmentation

(Beta = 0, sigma = 1.5)
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Figure 23. Result of median filtering

(Radius 40, sigma = 0.7)
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Figure 24. Result of median filtering

(Radius = 40, sigma = 1.0)
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Figure 25. Result of median filtering
(Radius = 40, sigma = 1.5)

41



C. SIMULATED ACOUSTIC IMAGE WITH RAYLEIGH BACKGROUND NOISE

The simulated acoustic image used in this part of the

study was a circle with random Rayleigh background noise.

This image was developed in MATLAB to resemble very closely

the image generated from the high resolution imaging sonar

model (Figure 3).

1. Edge Detection

For values of noise standard deviation less than one,

the modified Kalman filter edge detection algorithm has shown

acceptable results. The first order model was able to detect

the edges of the image but failed to differentiate many noise

spikes (Figure 26). The second order presented a far superior

result as shown in Figure 27. As the standard deviation of

the Rayleigh background noise was increased to one, the

modified Kalman filter was still able to produce acceptable

results as shown in Figures 28 and 29, respectively. The

algorithm had major problems for noise standard deviation

values much greater than one (Figures 30 and 31). This was

true for both first order and second order models.

2. Segmentation

The modified Kalman filter based on the first order

model provided good results. For background noise with a

variance equal to 0.7 and Beta equal to 2.0, the algorithm was

able to remove the circle from the noisy background (Figure

32). After increasing the variance of the background noise to

one, the algorithm was still able to segment the circle from
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Figure 26. First order model edge detection with Rayleigh

background noise (E(k) = 2.0, sigma = 0.7)
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Figure 27. Second order model edge detection with Rayleigh

background noise (E(k) = 2.0, sigma = 0.7)

44



Figure 28. First order model edge detection with Rayleigh

background noise (E(k) = 2.0, Sigma = 1.0)
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Figure 29. Second order model edge detection with Rayleigh

background noise (E(k) = 2.0, sigma = 1.0)
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Figure 30. First order model edge detection with Rayleigh

background noise (E(k) = 2.0, sigma = 1.5)
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Figure 31. Second order model edge detection with Rayleigh
background noise (E(k) = 2.0, sigma = 1.5)
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Figure 32. First order model segmentation with Rayleigh

background noise (Beta = 2.0, sigma - 0.7).

49



the noisy background (Figure 33). The algorithm was unable to

function as the variance of the noise level was increased to

1.5 (Figure 34).

The Kalman filter based on the second order model,

provided far better results as expected. For the noise with

sigma equal to 0.7, the algorithm completely segmented the

simulated acoustic image (Figure 35). Once again the second

order model proved to be far more sensitive. As the magnitude

of sigma was increased to one, the algorithm still provided

good results with some minor noise spikes (Figure 36).
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Figure 33. First order model segmentation with Rayleigh

background noise (Beta = 1.0, sigma = 1.0)
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Figure 34. First order model segmentation with Rayleigh

background noise (Beta = 2.75, sigma = 1.5)
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Figure 35. Second order model segmentation with Rayleigh

background noise (Beta = 0, sigma = 0.7)
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Figure 36. Second order model segmentation with Rayleigh

background noise (Beta = 0, sigma = 1.0)
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3. Median Filtering

The median filtering algorithm has been applied to the

simulated acoustic images with random Rayleigh background

noise (Figure 6 - 8). The results of the median filtering

algorithm are shown in Figures 37 - 39. In all three cases,

the algorithm removed noise spikes and preserved the edges of

the image.
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Figure 37. Median filtering with Rayleigh background noise

(Sigma = 0.7)
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Figure 38. Median filtering with Rayleigh background noise

(Sigma =1.0)
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Figure 39. Median filtering with Rayleigh background noise

(Sigma = 1.5)
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V. CONCLUSIONS

The image processing algorithms performed well on the

simulated acoustic images with random Gaussian and Rayleigh

background noise. In both edge detection and segmentation,

the modified Kalman filter provided good results in the

different types of noise backgrounds.

The results of the edge detection implementation suggests

the fact that the modified Kalman filter is robust in its

application to Gaussian and Rayleigh background noise. For

Gaussian background noise, the optimum threshold value was

found to equal 2.0. Using the same threshold value for

Rayleigh background noise, the results were very similar to

that of the first and second order Gaussian models. As the

magnitude of background noise was increased, the edge

detection algorithm began to break down. For plausible

signal-to-noise ratios, the edge detection algorithm continued

to function with acceptable results.

The modified Kalman filter algorithm used for segmentation

also provides insight on the robustness of the Kalman filter.

In the first order model case, the algorithm had to rely on

similar values of a parameter Beta which expresses the

likelihood of finding an edge in order to achieve segmentation

of the object. In the case of Gaussian background noise, the

optimal value for Beta was equal to 2.0. The optimal value
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for Beta was also equal to 2.0 for Rayleigh background noise.

The best segmentation results were achieved through use of a

second order model. In both cases, the optimal value of Beta

was equal to zero for Gaussian and Rayleigh background noise.

The concept of median filtering was also introduced in

this thesis. The use of median filtering in combination with

the modified Kalman filter provided good results. The median

filtering algorithm can be implemented as a post filter to

further remove spurious noise spikes and preserve the edges of

the object.
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APPENDIX
IMAGE PROCESSING ALGORITHMS

* This is a subroutine that will generate a simulated *
* acoustic image with Gaussian backround noise. The inputs *
* to the subroutine are circle radiusnoise variance and *
* and matrix size. *

clear
clg
% Define random Gaussian backround noise
rand('normal');
% Define conditions for simulated acoustic image
N=input('Input the number of row pixels
M=input('Input the number of column pixels
R=input('Input the desired radius of the circle
S=input('Input the value for sigma
aa=S^2*fix(abs(rand(N,M)));
c=zeros(l,4);
% Define center of image
cx=N/2;
cy=M/2;
% Generate simulated acoustic image

for i=l:N
for j=I:M

x=(i-cx) ̂2+(j-cy)A2;
if x<= R^2

aa(ij)=3;
end

end
end

********************************************************* **

* This is a subroutine that will generate a simulated *
* acoustic image with random Rayleigh backround noise. *
* The inputs to the subroutine are circle radius,noise *
* variance and matrix size. *
******* *** ** * ***************** ** *******************

%Define initial conditions for simulation
c=zeros(l,4);
N=input('Input the number of row pixels
M=input('Input the number of column pixels
R=input('Input the desired radius of circle
S=input('Input value for sigma
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X=ones(N,M)-rand(N,M);
Y=-2*S^2*log(X)
aa-sqrt(Y);
% Generate random Rayleigh backround noise
aa=rayleigh(N,M,S);
% Define center of image
cx=N/2;
cy=M/2;
% Generate simulated acoustic image

for i=l:N
for j=I:M

x=(i-cx) A2+(j-cy) A2;

if x <= RA2
aa(i,j)=3;

end
end

end

* This is a subroutine that will perform median filtering *
* on the simulated acoustic images. The input to *
* the subroutine is a matrix N x N containing simulated *
* acoustic image data. The output is a matrix of image *
* data representing the median values of the image. *

% Read simulated acoustic image into MATLAB
a=aa;
[N,M]=size (a);
% Create output matrix
d=zeros(N,M);
% Perform median filtering on data

for i=2:N-l
for j=2:M-l
w=(a(i-l,j-l:j+l) a(i,j-l:j+l) a(i+l,j-l:j+l)]';
d(i,j)=median(w);

end
end

% Save filtered image
putim(d, medtest')

* This is a subroutine that will compute the Kalman Gain *
* values for the first order model case. The Kalman Gain *
* values are computed along the row of pixels of interest. *

* For this case the variable M indicates the number of rows *

* in the image matrix. *

******************************************* *******************

% Define initial error covariance vaiue
p0=10000;
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% Define initial conditions
I=1;
phi=l;
c=1;
R=S^2;
% Generate Kalman gain values

for i=l:M
p0=(phi*pO*phi');
G(i)=(pO*c' )/(c*pO*c'+R);
pO= (I-G (i) *c) *pO;
s(i)=sqrt(c*pO*c'+R);

end

* This is a subroutine that will calculate the Kalman Gain *
* values for the second order case. The Kalman Gain values *
* are calculated based on each row of pixels in the image *
* file. The variable M represents the number of rows in the*
* image file. *

* Define initial error covariance matrix
pO=[10000 0;0 10000];
% Define initial conditions
I=[l 0;0 1];
phi=(O 1;-1 2];
c=[o 1);
R=SA2;
G=zeros(2,M);
% Generate Kalman Gain values

for i=l:M
p0=(phi*pO*phi');
G(:,i)=(pO*c')/(c*pO*c'+R);
pO=(I-G(:, i) *c) *pO;
s(i)=sqrt(c*pO*c'+R);

end

* This is a subroutine that will compute the gradient *
* operator of the simulated acoustic images. *
* *
* *

* ,

% Read in simulated acoustic image data
a=aa;
N=input('Input the number of row pixels
M=input('Input the number of column pixels ');
% Define output matrix
f=zeros(N,M);
% Create row mask
mx=[-l -2 -1;0 0 0;1 2 1];
% Create column mask
my=[-l 0 1;-2 0 2;-1 0 1];
x=[mx(1,l) mx(l,2) mx(l,3) mx(2,1) mx(2,2) mx(2,3) mx(3,1) mx(3,2)

63



mx(3,3)]
y=(xny(l,l) my(l,2) ray(l,3) my(2,l) My(2,2) my(2,3) my(3,l) my(3,2)
my (3, 3));
% Compute gradient values

for i=2:N-l
for j=2:M-l

ax=[a(i-l,j-l:j+l) a(i,j-1:j+l) a(i-l,j-l:j+l)];
Gx=conv(ax,x);
ay=[a(i-l,j-l:j+1) a(i,j-l:j+l) a(i+l,j-l:j+l)];
Gy=conv (ay, y) ;
f(i,j)=sqrt(Gx*Gx'+Gy*Gy');

end
end

% Save image for display
putim(f, 'testg')

*This subroutine detects the edges of the simulated
*acoustic images for the first order case. The des- *
*ired tolerance level and variance of backround noise are*
*input to the program.

%Read in test data
y=aa;
T=input('Input the desired tolerance level
S=input('Input the value of noise variance sigma ');
[N,M)=size(y);
% Define output matrix
e=zeros (N, M) ;
% Define initial conditions
c=l;
xhat=zeros(N,M);
% Generate Kalman Gain values
ka 1
% Detect edges of image

for k=l:N
t=l;
for 1=1:M
xhat(k,l+l)=xhat(k,l)+G(l,t)*(y(k,l)-xhat(k,l));
E=abs((y(k,1+1)-xhat(k,1+l))/s(t));
if E > T

t=l;
e (k,1+1) =255;

else
t=t+l;
e(k,1+1)=O;

end
end

end
% Save image for display
putim(e, 'edtest')
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* This is a subroutine that will detect the edges of the *
* the simulated acoustic images for the second order *
* case. The desired tolerance and noise variance are *
* input to the program. *

% Read in test data
y=aa;
T=input('Input desired tolerance level
S=input('Input value of sigma
(N,M]=size(y) ;
% Define initial conditions
e=zeros(N,M);
c=[O 1);
xhat=zeros(N,M);
% Calculate Kalman Gain values
kal2
% Detect edges of image

for k=l:N
t=l;
for 1=1:M-1

xhat(k,i+l)=xhat(k,l)+G(l,t)*(y(k,l)-xhat(k,l));
E=abs((y(k,l+l)-xhat(k,i+i))/s(t));
if E > T

t=l;
e(k,L+l)=255;

else
t=t+l;
e(k,l+l)=O;

end
end

end
% Save image for display
putim(e,'ed2test')

* This is a subroutine that will segment the simulated *
* acoustic images for the first order case. The algorithm *
* will estimate the pixel intensity row by row and *
* column by column then average the row and column sum *
* for the segmented output. *

% Read in test data
y=aa;
S=input('Input the value for sigma
B=input('Input value for Beta
% Define initial conditions
z=sqrt (2*pi) ;
xhatO=zeros (N,M);
xhatl=zeros(N,M);
xhatOO=zeros(N,M);
xhatll=zeros(N,M);
xhatr=zeros(N,M);
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xhatc=zeros(N,M);
[N,N]=size(y);
% Compute Kalman Gain values
kal
kal12
%Generate row pixel intensity estimates
for k=l:N

t=i;
for 1=M-1
xhatO(k,l+l)=xhatr(k,l)+G(l,t)*(y(k,l)-xhatr(k,l));
xhatl(k1~+l)=xhatr(k,l)+G(l,l)*(y(k,l)-xhatr(k,l));

if ipO > lpl-B
xhatr(k,l+l)=xhatO(k,1+1);

t=t+l;
else xhatr(k,l+l)=xhatl(k,l+l);

t=l;
end

end
end

%Generate column pixel intensity estimates
for jj=l:M

t=i;
for ii=l:N-l
xhatOO(ii+l,jj)=xhatc(ii,jj)+Gc(l,t)*(y(ii,jj)-xhatc(ii,jj));
xhatll(ii+l,jj)=xhatc(ii,jj)+Gc(l,l)*(y(ii,jj)-xlatc(ii,jj));

2);
if lp~c > ipic - B

xhatc(ii+l,jj)=xhatOO(ii+l,jj);
tt+ 1;

else xhatc(ii+l,jj)=xhat(ii+l,)));
t=l;

end
end

end
%Compute output image matrix
(xhat]=avg([xhatr]+Cxhatc]);
% Save output image for display
putim(xhat, 'segtest')

*This is a subroutine that will segment the simulated *

*acoustic images for the second order case. This routine*
*will estimate the pixel intensity row by row and*
*column by column then average the sum of the rows and *

*columns for the segmented output image.
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%Read in test data
y=aa;
% Define initial conditions
c=[ o 1 );
z=sqrt (2 *pi);
xhatO=zeros(N,M);
xhatl=zeros(N,M);
xhatOO=zeros(N,M);
xhatll=zeros(NM);
xhatr=zeros(NM);
xhatc=zeros(N,M);
% Input parameters
S=input('Input the value for sigma
B--input ('lnput the value for Beta
[N,MJ=size(y) ;
% Generate row pixel intensity estimates
for k=l:N

t=l;
for 1=1:M-1

xhatO(Jc,1+l)=xhatr(k,l)+G(l,t)*(y(k,l)-xhatr(k,l));
xhatl(k,l+1)=xhatr(k,l)+G(1,l)*(y(k,l)-xhatr(k,l));

if lpO > lpl - B
xhatr(k,l+1)=xhatO(k,l+1);
t=t+l;

else
xhatr(k,l+l)=xhat(k,l+l);

t=l;
end

end
end
%Generate column pixel intensity estimates
for jj=1:M

t=l;
for ii=l:N-1

xhatll(ii+l,jj)=x'hatc(ii,jj)+Gc(l,l)*(y(ii,jj)-xhatc(ii,jj));

if lp~c > lplc - B
xhatc(ii+l,jj)=xhatOO(ii+l,jj);

t=t+1;
else

xhatc(ii+l,jj)=xhat(ii+l,jj);
t=l;

end
end
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%Compute output image matrix
[xhat]=avg([xhatrJ+[xhatc));
% Save image for output
putim (xhat, 'seg2test')
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